Compact Random Feature Maps
نویسندگان
چکیده
Kernel approximation using random feature maps has recently gained a lot of interest. This is mainly due to their applications in reducing training and testing times of kernel based learning algorithms. In this work, we identify that previous approaches for polynomial kernel approximation create maps that can be rank deficient, and therefore may not utilize the capacity of the projected feature space effectively. To address this challenge, we propose compact random feature maps (CRAFTMaps) to approximate polynomial kernels more concisely and accurately. We prove the error bounds of CRAFTMaps demonstrating their superior kernel reconstruction performance compared to the previous approximation schemes. We show how structured random matrices can be used to efficiently generate CRAFTMaps, and present a single-pass algorithm using CRAFTMaps to learn non-linear multi-class classifiers. We present experiments on multiple standard data-sets with performance competitive with state-of-the-art results.
منابع مشابه
Spherical Random Features for Polynomial Kernels
Compact explicit feature maps provide a practical framework to scale kernel methods to large-scale learning, but deriving such maps for many types of kernels remains a challenging open problem. Among the commonly used kernels for nonlinear classification are polynomial kernels, for which low approximation error has thus far necessitated explicit feature maps of large dimensionality, especially ...
متن کاملOperator-Valued Bochner Theorem, Fourier Feature Maps for Operator-Valued Kernels, and Vector-Valued Learning
This paper presents a framework for computing random operator-valued feature maps for operator-valued positive definite kernels. This is a generalization of the random Fourier features for scalar-valued kernels to the operator-valued case. Our general setting is that of operator-valued kernels corresponding to RKHS of functions with values in a Hilbert space. We show that in general, for a give...
متن کاملOn continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملTripleSpin - a generic compact paradigm for fast machine learning computations
We present a generic compact computational framework relying on structured random matrices that can be applied to speed up several machine learning algorithms with almost no loss of accuracy. The applications include new fast LSH-based algorithms, efficient kernel computations via random feature maps, convex optimization algorithms, quantization techniques and many more. Certain models of the p...
متن کاملFaster Kernel Ridge Regression Using Sketching and Preconditioning
Kernel Ridge Regression (KRR) is a simple yet powerful technique for non-parametric regression whose computation amounts to solving a linear system. This system is usually dense and highly illconditioned. In addition, the dimensions of the matrix are the same as the number of data points, so direct methods are unrealistic for large-scale datasets. In this paper, we propose a preconditioning tec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014